

Train

Physics

 Simulator

Simulator

State

Train

Physics

AI

Signals

Network

Interface

Save and restore games

by saving and restoring

simulator game state.

Simulator State contains:

- currently running activity

- date, time, season, weather

- tdb

- position and speed of all trains

- alignment of switch tracks

- indication of all signals

- some critical animation states ie

loco lights on or off, bell is ringing,

pan is up or down

Since simulator state is kept in sync across

the network, it should exclude info that can

be regenerated locally – ie wheel rotation

angle, smoke particles, scenery animation

position, etc. These things will be

maintained inside the 3D Viewer

Network interface keeps

simulator state in sync

among multiple players

2D Track

Schematic

Viewer

Tower Operator

Viewer

Dispatch Board

Viewer

3D Viewer

- scenery, track, terrain appearance

- sky, water, sun, moon

- time of day effects

- weather , season effects

- shadows, lights

- forest regions

- appearance of interactive objects

- behaviour and appearance of

animated objects, hazards etc

- appearance of signals

- behaviour and appearance of smoke

Important Point:

Communication is one way, with

viewers calling methods and

examining properties in the

Simulator. The simulator does

not call the viewers except

through the event notification

mechanism.

Multiple possible viewers.

Player controls

Camera

Controls

Other Trains

Signal Indications

Switch Aligment

Remote computer does

not run AI or Signals

modules.

Loco

Appearance

Cab View

Loco

Physics

The modules for AI and

Signals can be replaced on a

‘per route’ basis with a

custom .dll

Loco Appearance and/or

Loco Physics modules can

be replaced on a ‘per wagon’

basis.

Pl. Train

Simulator

Controls

Ie, pause

, uncouple

etc
SetAccelleration()

OVERVIEW

Train

Physics

Computes

Car

Locations

Player input

Loco

Physics

3D Viewer

Loco

Physics

Car

Physics

Car

Physics

Car

Locations

Loco

Appearance
Controls

%Power

Controls

Forces

Forces

Forces

Forces

One player driven locomotive in

the train. Second locomotive

‘MU’d’. Note, even for steam loco

powered trains we will implement

concept of an undriven loco,

controlled by signals from the

driven loco.

A Loco Physics module must be able to

respond to control commands from its

matching 3D viewer module., OR,

%power commands. The %power

commands is the mechanism used to

control undriven loco’s in a multiple

unit train, to control a loco on an AI

driven train, and to control a loco that is

driven remotely on another PC. Note

that in the latter two cases, since the

force calculations are ignored, the

purpose of notifying the loco physics

module of the loco’s power setting is

only to ensure its sounds, smoke

generation etc are appropriate for the

power levels it is running at.

Brake Line

Propagation

PSI

PLAYER CONTROLLED TRAIN

AI

Driver

AI

Dispatcher
Waypoints

- location

- time

- speed

Train

Physics

Computes

Car

Locations

Loco

Physics

Loco

Physics

Car

Physics

Car

Physics

Car

Locations

%Power Forces

Ignored

Forces
Ignored

SetAccelleration()

Commands

AI Controlled Train. The train

physics module sends %power

signals to physics module to

control animation etc of the loco

under power. However, forces are

ignored. To ensure deterministic

behaviour, train motion follows

acceleration commands fromAI

Brake Line

Propagation

PSI

Since loco and car

forces are ignored on

an AI train, brake line

propagation module is

unused, and could be

disconnected to save

computing resources.

AI CONTROLLED TRAIN

Remote

Driver

Train

Physics

Computes

Car

Locations

Loco

Physics

Loco

Physics

Car

Physics

Car

Physics

Car

Locations

%Power Forces

Ignored

Forces
Ignored

SetAccelleration()

Commands

In a multiple player environment, each

train is controlled by only one

controlling computer. All other

computers update the position of the

train via the remote driver. The remote

driver receives broadcasted

timestamped position updates from the

controlling computer. It compares these

with where the train actually is on his

computer, and issues setAccelleration

commands as need .

Brake Line

Propagation

PSI

Since loco and car

forces are ignored on

an AI train, brake line

propagation module is

unused, and could be

disconnected to save

computing resources.

Timestamped

Position

Updates
Network Network

REMOTE CONTROLLED TRAIN

STARTING

PROGRAM

Main(Act.)

Viewer3D.Run()

 RenderProcess.Run()

Construct Simulator(for Act.)

Construct Viewer3D(for Sim.)

Construct RenderProcess()

 Viewer3D.Configure()

Construct LoaderProcess()

Construct UpdaterProcess()

RenderProcess

(XNA Game Class)

LoaderProcess

UpaterProcess

STARTING

3D GRAPHICS

SYSTEM

RenderProcess.Initialize()

Viewer3D.Load()
 TerrainDrawer.Load()

 SceneryDrawerLoad()
 TrainDrawerLoad()

RenderProcess.Draw()

LoaderProcess.Run()

 UpdaterProcess.Run()

UserInput.Update()

UpdaterProcess.Update()
RenderFrame

Simulator.Update()
- physics

- ai

- signals

Viewer3D.Handle UserInput()
- camera

- player loco

- game control

Viewer3D.PrepareFrame()
- camera

- sky

- terrain
- scenery

- trains

- info

RenderFrame

RenderProcess.Draw()

Draws Nothing

Must wait for the
renderframe data before it

can begin to draw.

FRAME 1

FRAME 2

Viewer3D.LoaderPrep()

- terrain
- scenery

- trains

 Camera and Train Locations

UpdaterProcess.Update()

RenderFrame

Improving Load Time

TerrainDrawer.Load() could benefit from

additional multiprocessing. It is CPU limited
(vs Disk limited) and it shouldn’t be too hard to

split the loading task off into multiple processor

threads, one for each tile.

Viewer3D.Initialize()

Viewer3D.LoadPrep()

Materials.Initialize()

Sets Time – RealTime and ClockTime

RenderProcess.Draw()

Simulator.Update()

- physics

- ai
- signals

Viewer3D.Handle UserInput()
- camera

- player loco

- game control

Viewer3D.PrepareFrame()
- camera

- sky

- terrain
- scenery

- trains

- info

RenderFrame.Draw()

For each Primitive …

Material.Render()
 RenderPrimitive.Draw()

Material.Render()

 RenderPrimitive.Draw()

Material.Render()

 RenderPrimitive.Draw()

Material.Render()

 RenderPrimitive.Draw()

Material.Render()

 RenderPrimitive.Draw()

Material.Render()

 RenderPrimitive.Draw()

Material.Render()

 RenderPrimitive.Draw()

Material.Render()

 RenderPrimitive.Draw()
.

.

.

Viewer3D.LoaderPrep()
- terrain

- scenery

- trains

 Camera and Train Locations

Shape File Additions/Deletions

Viewer3D.Load()

- TerrainDrawerLoad()

- SceneryDrawerLoad()

- TrainDrawerLoad()

RenderFrame

List of

primitives

HandleUserInput only runs

when RenderProcess signals
new input is ready.

LoaderPrep runs every 100 mS

or when data is available

100 mS

RenderFrame

HandleUser

Input runs

every 30 ms

RenderProcess.Draw()

UserInput.Update()

UpdaterProcess.Update()

Normally UpdaterProcess

will be waiting for
RenderProcess.

